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Abstract

In recent years there has been a proliferation of modeling techniques for forward predic-
tions of crack propagation in brittle materials, including: phase-field/gradient damage
models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques.
However, progress on the corresponding inverse problems has been relatively lack-
ing. Taking advantage of key features of existing modeling approaches, we propose
a parabolic regularization of Barenblatt cohesive models which borrows extensively
from previous phase-field and gradient damage formulations [1,2]. An efficient explicit
time integration strategy for this type of nonlocal fracture model is then proposed and
justified. In addition, we present a C++ computational framework for computing in-
put parameter sensitivities efficiently for explicit dynamic problems using the adjoint
method. This capability allows for solving inverse problems involving crack propaga-
tion to answer interesting engineering questions such as: 1) what is the optimal design
topology and material placement for a heterogeneous structure to maximize fracture
resistance, 2) what loads must have been applied to a structure for it to have failed in an
observed way, 3) what are the existing cracks in a structure given various experimental
observations, etc. In this work, we focus on the first of these engineering questions
and demonstrate a capability to automatically and efficiently compute optimal designs
intended to minimize crack propagation in structures.
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1 Introduction

This report of comprised of two main sections. In section 2, existing phase-field fracture
models are summarized and a numerical implementation based on an explicit time integration
scheme is proposed. Initial results indicate that the approach is mesh convergent, efficient,
and capable of capturing experimentally observed brittle fracture phenomena in both 2D
and 3D. In section 3, an approach to inverse methods involving highly nonlinear dynamic
fracture simulations is proposed. The adjoint embedded sensitivity equations are derived for
a general explicit dynamic simulation, and specialized to the phase-field evolution equations
of primary interest here. Using Sandia’s Rapid Optimization Library (ROL), a prototype
optimal design problem is demonstrated. Appendix A contains a summary of Springbok, a
new C++ library for computing adjoint sensitivities for dynamic problems. This library was
critical for managing the complexity of the adjoint calculations required for the nonlinear
explicit dynamic inverse problem demonstrated here.
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2 Phase-field models for dynamic fracture

Classical local damage models are known to be ill-posed [3]. In practice, this results in non-
convergence for many common numerical approaches to failure modeling. To demonstrate
this issue, mode-I fracture simulations using a maximum principal stress failure criterion
and element deletion to model the failure of brittle materials are shown in Figure 1. As
expected, the predicted crack path is highly sensitive to the initial mesh size. Perhaps
more importantly, the energy dissipated in each of these simulations varies substantially. It
is well established that for fracture in brittle materials, the energy release rate associated
with the creation of new surfaces is the critical factor for determining the propagation and
propagation direction of cracks [4]. Brittle failure models that are successful at overcoming
the limitations of local damage models are energetic and often nonlocal. Examples include
linear elastic fracture mechanics (LEFM), cohesive zone models, peridynamics [5–7], and
phase-field/gradient damage models [1, 2, 8–10]. Compared to the first two approaches,
peridynamics and phase-field models have one critical advantage: they are energetic and
nonlocal. This allows the prediction of crack branching and coalescence to be emergent, not
prescriptive. In other words, crack branching occurs naturally and automatically in these
theories, without having to impose any additional branching criterion. This is in contrast
with, e.g., cohesive models, which are energetic and contain a length scale, but are essentially
local and require external criterion to predict crack branching.1 For this work, we pursue
phase-field over peridynamics because the former is a more direct extension of classical
damage modeling approaches, and it fits naturally in legacy finite element codes. The key
contributions here are: 1) to highlight the advantage of cohesive phase-field models [2,12] over
more standard phase-field models [1,8–10], and 2) that phase-field models can be efficiently
and accurately integrated in time using an explicit update rule.

Figure 1: Non-convergence of failure models using a local criterion. The mesh resolution is
increasing from left to right.

The use and development of phase-field models for brittle fracture has gained signifi-
cant attention in recent years. This approach avoids the need for discretizing sharp crack

1For inter-element cohesive model discretizations [11], branching events are often determined primarily
by the initial mesh!
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discontinuities by smoothing the representation of a crack over a prescribed length scale,
L. A schematic of the ‘smoothed’ phase-field regularization of a sharp crack is depicted in
figure 2. The approach was initially justified as a mathematical regularization of variational
fracture [4, 8] and approximates Griffith fracture/LEFM in the appropriate limits.

Figure 2: Schematic showing the phase-field approximation to a sharp crack.

Starting from an energetic point of view, phase-field models postulate a Helmholtz free-
energy functional ψ which depends on the strain ε and the phase-field (a.k.a. damage field)
φ ∈ [0, 1]:

ψ(ε, φ) = g(φ)ψ+
e + ψ−e + h(φ) + c

2∇φ · ∇φ, (1)

with strain energy ψe = 1
2 ε : E : ε, strain ε = 1

2

(
∇u +∇uT

)
, and displacement field

u. The + and − on the strain energy terms distinguishes between tensile and compressive
contributions and is intended to prevent damage under pure compression and to maintain
material resistance under compression [1]. The modeling choice of how to decompose the
strain energy into compressive and tensile parts turns out to be critical for crack propagation
predictions [13], but will not be discussed further in this report. The standard damage
convention is used with φ = 0 indicating no damage and φ = 1 indicating a fully damaged
state. The last two terms in equation (1) together form the so-called crack energy density
γ = h(φ) + c

2∇φ · ∇φ. The integral of this term over the domain forms an approximation to
the energy associated with the creation of a new crack surface:∫

Ω
γ dx ≈ GcAcrack, (2)

where Acrack is the crack surface area. Crack energy densities are typically parameterized by
a length L, and the approximation (2) becomes exact in the limit L→ 0.

The momentum balance equation follows from equation (1) as

ρü = ∇ · σ + b, (3)

where σ = g(φ)∂ψ
+
e

∂ε
+ ∂ψ−

e

∂ε
.
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Assuming a strictly dissipative process, we take the phase evolution equation to be:

ηφ̇ = 〈−Dφψ〉+ = 〈−g′(φ)ψ̂+
e − h′(φ) + c∇2φ〉+, (4)

where η ≥ 0 is the phase viscosity and Dφ denotes a Frechét derivative with respect to the
phase-field. Irreversibility of the phase evolution, φ̇ ≥ 0, is ensured by the inclusion of the
Macauley brackets:

〈x〉+ :=

x for x > 0
0 for x ≤ 0.

2.1 Standard phase-field fracture model

For completeness, we describe the standard phase-field fracture model. (e.g., [1,9])2 For this
model the degradation function is

g(φ) = (1− φ)2,

and the phase potential is

h(φ) = κφ2,

where κ is related to the length scale and energy release rate. Writing it out in full, the
classic phase-field model has a potential given by:

ψ(ε, φ) = (1− φ)2ψ+
e + ψ−e + Gc

2Lφ
2 + GcL

2 ∇φ · ∇φ.

This model is known to Γ-converge to Griffith fracture/LEFM as the length scale is decreased
L → 0. However, for any finite length scale l > 0, damage begins to evolve for any non-
zero straining of the material. While this means there is no stress threshold for damage
evolution, there is still a known maximum obtainable stress predicted by the model in 1D
given by (see [9])

σmax = 9
16

√
EGc

6L .

This is often interpreted as the cohesive strength for a phase-field model with non-zero L.

2.2 Cohesive phase-field fracture model

The cohesive gradient damage model proposed in [2] is a special case of a phase-field fracture
model where

g(φ) = (1− φ)2

1 + (m− 2)φ+ (1 + pm)φ2

2At first glance the models from [1] and [9] appear different; however, a change of variables and a
redefinition of L yields equivalent models.
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and3

h(φ) = kφ,

where the parameters k, c and m are related to macroscopic cohesive fracture properties [2]:

k = 3
4
Gc

L
c = 3

8LGc m = 3
2
EGc

σ2
cL

. (5)

The parameter p influences the shape of the cohesive traction separation law following initial
damage (and also the process zone size [12]), Gc is the fracture energy/critical energy release
rate, L is the phase regularization length scale and σc is the critical stress in 1D. Lorentz et
al. argue on physical grounds that p ≥ 1 and m ≥ p + 2. The first constraint ensures the
traction separation law is a monotonically decreasing function of the opening displacement.
The second constraint can be rewritten

L <
3

2(p+ 2)
EGc

σ2
c

, (6)

where we identify the right hand size as being the correct scaling for the process zone length
in cohesive zone models. We can interpret this condition as constraining the regularization
length scale to be small enough to resolve the process zone size.

Note that we have replaced ψ+
e in equation (1) with ψ̂+

e to initialize the driving strain en-
ergy density to the threshold value implied by the Lorentz model. For an initially undamaged
material, φ = 0, g′(φ) = −m and ∇2φ = 0, so

ηφ̇ = mψ̂+
e − k.

Requiring φ̇ ≥ 0, we redefine ψ̂+
e as

ψ̂+
e (t) = max

(
ψ+
e (t), k

m

)
.

In other words, we initialize ψ̂+
e = k

m
. Damage can only evolve once this initial strain energy

barrier has been exceeded. This is in strong contrast to the standard phase-field models used
in [1, 8–10] in which some damage evolution occurs for any strain energy ψ+

e > 0.

2.3 Crack surface energies with a critical stress threshold

To gain a little more insight into the cohesive phase-field model, we analyze the crack energy
density term γ independently of the mechanics terms. Similar to the derivation of the
standard phase-field model by Miehe, we start with the variational problem, approximating
the crack surface energy in 1D by:

Ecrack(φ) =
∫ ∞
−∞

γ(φ) dx, (7)

3Lorentz, et al. formulate this term as a dissipation potential to include the effects of irreversibility, here
we include this term as part of the stored energy associated with the phase to simplify the exposition.
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where the crack energy density γ(φ) for this model is given by:

γ(φ) = kφ+ c

2∇φ · ∇φ.

The functional (7) yields the Euler-Lagrange equation:

k = c∇2φ. (8)

Using the constraint that the bar is fully broken at x = 0 and undamaged far away: φ(0) = 1
and φ(±∞) = 0, a solution is

φ(x) =


1
L2 (L− |x|)2 for |x| ≤ L

0 otherwise
(9)

where L =
√

2c
k

.

To ensure that the functional (7) approximates the energy release rate associated with
surface creation, we require∫ ∞

−∞
γ(φ) dx =

∫ ∞
−∞

kφ+ c

2∇φ · ∇φ dx = Gc.

With this additional constraint, we can reproduce the parameters from equation (5):
c = 3

8LGc, and k = 3
4
Gc

L
.

This type of phase-field crack energy density results in a natural damage threshold, as
implied by the φ(x) = 0 for |x| > L part of the analytic solution in (9). This feature
is independent of the chosen degradation function g(φ) and has been used is conjunction
with the standard phase-field degradation function [1, 9]. However, in order for the phase-
field model to be truly cohesive, we require both a threshold crack energy density and a
degradation function which ensures that the critical stress is independent of the regularization
length scale. This property will be shown for the Lorentz model below.

2.4 Requirements for a cohesive phase-field model

A critical difference between the Lorentz gradient damage model and standard phase-field
models is that the Lorentz model converges to a cohesive zone model as the regularization
length scale goes to zero, L → 0 [2], while the standard phase-field model Γ-converges to a
Griffith model as L→ 0 [4,14].4 A proof of this is provided in [2]. Here we give a simplified

4Both Griffith and cohesive (a.k.a. Barenblatt) models of fracture are characterized by a release of energy,
Gc, per unit area of crack growth. The distinction is that the Griffith model is purely energetic and effectively
has an infinite critical stress, with a corresponding singular stress intensity factor at the crack tip. Cohesive
models have a finite critical stress and correspondingly have finite stress intensities at the crack tip.
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and hopefully more intuitive demonstration that the model is cohesive. Recalling that the
standard phase-field model has a failure stress in 1D given by

σmax = 9
16

√
EGc

6L ,

and that the fracture process zone length, lfpz (depicted schematically in figure 3), scales as

lfpz ∝
EGc

σ2
c

we find

L ∝ lfpz.

Figure 3: Schematic for a cohesive fracture process zone. Cohesive models are characterized
by a process zone over which the surface tractions decay from the cohesive failure stress σc
to 0 in the wake of the propagating crack. We refer to the distance along the propagating
crack over which this decay occurs as the fracture process zone length.

In other words if we fix a critical stress to approximate a cohesive-like failure criterion,
the standard phase-field model predicts that the regularization length scale, L, must scale
proportionally to the fracture process zone length scale, lfpz. In other words, these two length
scales are directly tied together in the standard phase-field model. A direct consequence of
this is shown on the left of figure 4. If the fracture process zone length is a significant
fraction of the geometrical length scales in the problem,5 the regularization provided by the
phase-field model appears unphysically large. For a truly cohesive phase-field model, the
regularization length scale should be able to be chosen independently of the fracture process
zone length scale. From equation (6), we see that the Lorentz model satisfies this stricter
definition of a cohesive phase-field model. Furthermore, in [2], it is demonstrated that this
model predicts an exponential-like traction separation decay function, where shape of the

5Recall that the fracture process zone length is predominantly a function of material properties such as
fracture toughness, stiffness, and critical stress.
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decay can be controlled by the parameter p. Changing the shape of the traction-separation
law also has the effect of modifying the process zone size [12].

The independence of the regularization length-scale from the fracture process zone length
is shown in figure 4 for the case of a dynamic mode-I dynamic crack propagation problem,
where the standard and Lorentz phase-field models are compared. The loading in both cases
is a prescribed vertical velocity on the left side of the specimen. The top half has an applied
velocity of 9 m/s in the positive y direction, while the bottom half has applied the same
velocity in the negative direction. The maximum stress is given as σc = 250e6, the critical
energy release rate is Gc = 100e3, the young’s modulus is E = 200e9, the Poisson’s ratio is
ν = 0.3, and the density is ρ = 8000. The presumed unit system is MKS. The problem is
2D, with the specimen having a height and width of 0.1. The cohesive shape parameter is
taken to be p = 3. Not shown in the figures is the initial crack which extends from the left
edge to the center of the specimen, located at the y = 0 plane. The damage profiles shown
are propagating from this initial pre-crack.

Figure 4: Griffith vs. cohesive phase-field model results. Simulation result for mode-I
crack propagation problem with the standard phase-field model (left) and Lorentz’s cohesive
gradient damage model (right).

For a little more insight, we can determine the critical strain energy density predicted by
the Lorentz model using equation (4). In an undamaged material, the model predicts some
damage evolution when the following condition is satisfied:

−g′(0)ψ̂+
crit = k.

Due to dimensional scaling, the parameter k must be inversely proportional to the reg-
ularization length, L, for any physical phase-field fracture model. If −g′(0) is independent
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of L (as with the standard degradation function, where g(φ) = (1− φ)2), the critical strain-
energy-density at failure must depend on L. However, the Lorentz model is carefully design
in such a way that

φ̂+
crit = k

−g′(0) = k

m
,

where k
m

is independent of L.

We see that in this model, the critical strain energy density (or critical stress) is com-
pletely independent of the regularization length scale, in contrast to the standard model.
Figure 4 demonstrates the advantage of this flexibility. On the left, the standard phase-field
solution has damage smoothed over a length similar to the process zone length, which is
visibly large in this problem. On the right, we can choose to interpret the regularization
length scale as a numerical parameter and have it be an order on magnitude smaller. This
results in a significantly sharper effective crack.

A final property of the Lorentz model is that stress is a strictly decreasing function of
the damage, so that the critical stress is also the maximum obtainable stress. Combine these
properties, we find that the maximum stress in the Lorentz model is independent of the
regularization length. These feature lead to the cohesive properties of the Lorentz model.

2.5 Parabolic regularization, explicit time integration, and stable
time step

The model resulting from equations (3), (4) can be considered a parabolic regularization
of brittle cohesive fracture. It is common for phase-field models to be considered elliptic
regularization due to the inclusion of the diffusion/elliptic term ∇2φ. With the addition of
the phase viscosity term ηφ̇, equation (4) become parabolic in nature.

One practical difficulty with equations (3) and (4) is that the first is a hyperbolic partial
differential equation (PDE), while the second is a parabolic PDE. It is common in practice
to numerically integrate the hyperbolic equation (3) in time using an explicit time-stepping
algorithm [15, 16], especially for problems involving wave propagation, damage and failure.
However, parabolic equations such as (3) (similar to the heat equation) are notorious for being
difficult to integrate explicitly due to the restrictive time-steps required as the discretization
is refined. In particular, the stable explicit time step for this class of PDEs scales as ∆t ∝
(∆x)2. An alternative is to integrate (3) using an explicit scheme and (4) implicitly. However,
this incurs a significant computation cost compared to just integrating (3) in the standard
manner. Here we propose to break with convention and integrate the parabolic equation (4)
explicitly as well, in spite of the time step restriction, which we believe is not the limiting
factor for most phase-field fracture problems in practice.

A rough physical justification for how we can get away with this is as follows: in elasto-
dynamics it is well know that information (i.e. waves) can travel no faster than the wave
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speeds in the material. This is true for crack propagation as well; the speed of propagation
is bounded by a fraction of the wave-speeds of the surrounding material. Parabolic systems
effectively propagate information instantaneously, which mean that equation (4) represents
something of a contradiction because it allow for information about material damage to
propagate faster than the material wave-speeds.6

Stable time step restrictions can be thought of as a constraint on how fast information is
allowed to travel through a mesh. The implication of this is that the stable time step required
to integrate the hyperbolic equation (3) should already be sufficiently small to integrate the
parabolic equation (4) provided that the phase viscosity η is appropriately chosen, e.g., in
physically reality, we don’t expect to see damage propagating faster than the elastic wave-
speeds which are traditionally responsible for restricting the explicit time step. A simplified
analysis leads to the scaling:

η

∆t &
c

(∆x)2 .

Taking s to be the fastest wavespeed in the material, the stable explicit time step for equa-
tion (3) is already restricted by ∆t ≤ ∆x

s
due to the mechanics, so if we choose η? such

that

η? &
c

s∆x ≥
c∆t

(∆x)2 ,

the critical time step will not be impacted by the inclusion of the phase-field equation. Ideally,
we’d like η? as small as possible to minimize energy dissipation due to phase viscosity and to
maximize the energy going into crack formation, so in practice we choose the phase viscosity
to be

η? = fc

s∆x =
f 3

8LGc

s∆x = f ?N
Gc

s
,

where f ? ≤ 1 is a safety factor, and N = L
∆x is the approximate number of elements that

are being used to resolve the length scale L. What this implies is that if we refine the mesh
keeping N fixed, the stable time step for explicit time integrated phase-field fracture scales
with the stable time step for elasto-dynamics.

Implementation details

The phase-field time integration is done using an explicit Euler time integration strategy:
Mφ

(
φn+1
h − φnh

)
= fnφ∆t,

which steps at the same rate as the explicit Newmark time integrator for the mechanical
system. The nonlinear phase-field force fnφ = fφ(φnh,unh) is evaluated at the old time step
and involves a consistent mass matrix for the −g′(φ)ψ̂+

e − k term and a consistent stiffness
matrix for the c∇2φ term (computed explicitly without actually forming the matrices). The
mass matrix Mφ is the lumped mass matrix corresponding to a density of 1.

6While this seems unphysical, we have to realize that equation (1) is a regularization of the “true” physical
problem which is the limit L→ 0.
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Sierra input

The input syntax for using the explicit cohesive phase-field model in Sierra/SolidMechan-
ics [17] is

begin property specification for material phase_field_fracture
density = 2450
begin parameters for model gradient_damage_explicit

Youngs modulus = 32e9
Poissons ratio = 0.2
fracture length scale = 2.5e-04
fracture energy = 3.0
critical stress = 1.0e7
cohesive shape = 2.0
phase viscosity = 0.8

end
end

It is also necessary to add a reaction diffusion command block:

begin reaction diffusion
initial value = 0.0
solve explicit = on

end reaction diffusion

The initial value = 0.0 sets the initial phase-field to 0, corresponding to no damage (this
is in contrast to some phase-field fracture models which start the undamaged phase at 1 and
damage it to 0). Most of the material properties are standard. The two notable exceptions
are the “cohesive shape” which corresponds to p from [2,12] (we typically use 1–3) and “phase
viscosity” which is currently poorly labeled as it actual corresponds to the numerical safety
factor f ? and should be set to a value under 1.0. We also try to have at least 5-10 elements
spanning the fracture length scale L.

2.6 2D examples

Here we present several examples in 2D. These examples demonstrate 1) convergence rates
of the method, 2) the fracture mechanisms which are predicted by the model, and 3) the
computational efficiency of the method.

Dynamic mode-I fracture

A common initial benchmark problem for brittle fracture is dynamic mode-I crack propaga-
tion. Considering figure 5, the problem setup has a prescribed velocity on the left side of the
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specimen. The upper side of the left edge has a positive velocity of 25 m/s applied to it, while
the bottom part of the left side has a negative 25 m/s prescribed velocity. The mechanics
parameters used are a stiffness E = 190e9, density ρ = 8000, energy release rate Gc = 2e5,
Poisson’s ration ν = 0.3, cohesive shape p = 3, and a cohesive strength of σc = 40e8. The
specimen is 0.1 in length and width. The simulation is 2D and similar to the simulation
from section 2.4, the is a pre-crack starting at the left edge and ending in the middle of the
specimen.

Figure 5: Mode-I crack propagation predictions for different regularization lengths.

For phase-field simulations, the notion of convergence can be a little subtle. Here we
consider two kinds of convergences: one in which we fix the regularization length scale as the
mesh is refined, and the other where we decrease the regularization length with the mesh size.
We observe convergence in both cases. For the first case, we get the anticipated convergence
rate of ∼ 1. We are solving a parabolic PDE using linear finite elements, so we expect the
energy norm to converge spatially at first order. In the second case the regularization length-
scale is changing, so we are actually solving a different PDE for each refinement. Despite
this complication, we find that we do indeed appear to be converging (albeit slowly, at half
order) to a solution which dissipates the correct energy, and has the correct failure stress.
In this sense it appears we are converging to a cohesive model solution. We note that this
is only the case for a single propagating crack as cohesive models do not, in themselves,
predict branching. As shown below, phase-field models are naturally capable of predicting
branching without any additional constitutive assumptions. When this occurs, there is
no corresponding cohesive model capable of capturing that behavior without imposing an
external branch criteria, or allowing a discretization to artificially choose to branch based on
initial mesh geometry.

Example mode-I crack propagation predictions for two different regularization length
scales are shown in figure 5. We find that the dissipated energy in the two cases is similar.
In fact, energy conservation using with this approach is nearly exact (provided that the time
step is sufficiently small), as demonstrated in figure 6. Furthermore, the predicted energy
dissipation due to crack propagation matches well with the expected analytic result which is
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Figure 6: Energy vs. time for explicit phase-field fracture simulation subjected to dynamic
mode-I loading.

GcAcrack, where Acrack is the final crack surface area. A convergence plot for the two types
of convergence mentioned above is shown in figure 7. The error in this plots in the difference
between the energy dissipated numerically and the analytic energy dissipated, GcAcrack.

Dynamic mode-I fracture: transition from a single crack to crack branching

An example demonstrating a transition from a single propagating crack to crack branching
is shown in figure 8. For a given applied mode-I velocity, a bifurcation in the fracture pattern
occurs as we lower the fracture energy. The way this is typically explained is that for a given
loading, if the critical fracture energy Gc is high, a single crack is sufficient to dissipate the
input energy. If instead Gc is low, then more than one crack is necessary to dissipate that
same amount of input energy.

Dynamic mode-I fracture: mesh insensitivity of branch predictions

Qualitative convergence of dynamic branching under a nominally mode-I loading is shown in
figure 9. This demonstrates that even in the presence of crack branching, phase-field fracture
predictions appear to be very insensitive to the mesh refinement. While the results here are
computed on a structured grid, a similar result is expected even for an unstructured initial
mesh.
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Figure 7: Convergence plots for the two different convergence strategies. The first way (in
red) fixes the length scale and reduces the mesh resolution and the time step. The second
way (in blue), has the time step and length scale reducing with the mesh size (though both
at only half the rate). Converges rates of 1 and 0.5 are observed for these two cases.

Figure 8: Transition from straight crack propagation to crack branching as the critical energy
release rate is decreased.

21



Figure 9: Dynamic mode-I crack propagation simulation for varying refinement levels. The
number of elements per mesh from left to right are: 1.4 million, 4.1 million, 11.8 million. This
result demonstrates that the predicted crack path is not very sensitive to the refinement level.
Also note that due to a GPU implementation, the total run time for the finest simulation
with 11.8 million elements was very reasonable. It only took around 5 hours on a single
Nvidia Tesla K-40 GPU.

Kalthoff

The Kalthoff test, which is based on experimental results by Kalthoff and coworkers [18,19],
has emerged as a benchmark problem for numerical approaches to brittle and ductile failure
modeling [20,21]. The test consists of a plate with two edge notches, as depicted in figure 10,
impacted by a projectile with initial velocity v0. The two initial notches are equidistant from
the center-line of the target and are separated by distance equal to the diameter of the
projectile. For the simulations here, the notches are separated by a distance of 0.05 m, while
the height of the target is 0.2 m and its width is 0.1 m. The material parameters used are
a density ρ = 8000 kg/m3, Young’s modulus E = 190 GPa, Poisson’s ratio ν = 0.3 and
fracture energy Gc = 22, 000 J/m2. We use an initial impact velocity of v0 = 16 m/s, which
in experiments resulted in brittle crack propagation at an angle of around 70◦ relative to
horizontal. A result using the explicit cohesive phase-field formulation is shown in figure 11.
The predicted crack propagation angle is comparable to the experimentally observed angle,
a result which is very competitive with alternative techniques [7, 20,21].

Glass/steel interface problem

Recent experimental crack propagation results for a glass/steel interface problem [22] are
shown in figure 12. The problem setup has a steel layer on top and a larger section of glass
below. The temperature is dropped by around 470◦. As the thermal contraction in the metal
is larger than the contraction in the glass, this results in an effective moment being applied
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Figure 10: Schematic of the Kalthoff [19] impact problem setup.

Figure 11: Predicted damage for Kalthoff simulation. Crack path matches well with the
experimentally observed crack propagation angle of ∼ 70◦. Only the top half of the specimen
is modeled.
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to the specimen. This in turn drives an initial vertical crack to begin propagating farther
in the vertical direction. As the crack approaches the glass/metal interface (which is cannot
easily cross), it turns to eventually run parallel to that interface. An example simulation
result using phase-field is shown in figure 13.

Figure 12: Experimentally observed crack propagation for glass/steel interface experi-
ment [22].

Figure 13: Simulated crack propagation for glass/steel interface problem using explicit co-
hesive phase-field approach.

The glass stiffness was taken as E = 64e9, the Poisson’s ratio was ν = 0.2, the energy
release rate was Gc = 400, the critical stress was σc = 8.0e7, and the thermal expansion
coefficient was α = 3.25e−6. The metal stiffness was taken as E = 193e9, the Poisson’s ratio
was ν = 0.29, and the thermal expansion coefficient was α = 17.3e−6.

The experimentally observed results are qualitatively replicated. This simulation was
actually run in explicit dynamics, but over a long enough time to replicate quasi-static
loading. Approximately 1.5 million element were used for this result, but no expensive (and
serializing) mesh modifications were necessary. Running on just a single Nvidia Tesla K-40
GPU, this result took less than 6 hours to compute. It is expected that a truly quasi-static
implementation (e.g., using dynamic relaxation) could improve the efficiency of the approach
significantly.

2.7 3D examples

The previous 2D example problems were all simulated using a newly developed, GPU-ready,
adjoint-capable, structured grid finite element code, PhaseFieldMini. In addition to de-
veloping the explicit phase-field capability in this miniapp, the model was also added to
Sierra/SolidMechanics [17], leveraging the initial implicit phase-field implementation by Prof.
Dolbow and the SolidMechanics team. This allows us to do large 3D brittle fracture sim-
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ulations in parallel on unstructured meshes. Two example problem results will be briefly
shown: 1) ceramic impact and 2) torsional fracture.

Ceramic impact

A demonstration ceramic impact simulation result is shown in figure 14. Without going into
the details (as it is still work in progress), we will only comment that the approach appears to
generalize well to 3D. This particular simulation is capable of capturing several key features
of ceramic impact problems: spall planes, radial crack formation, and conical crack which
form internal to the target at approximately 45◦.

Figure 14: Simulated results for model ceramic impact problem. Spall planes, radial crack,
and cone cracks can all be observed.

Torsional fracture

As a second 3D demonstration, a simple torsional fracture simulation was setup. The ge-
ometry is a simple cylinder, and the loading is a fixed displacement on the top plane, and a
prescribed rotational displacement on the bottom plane. This induces torsion in the speci-
men, resulting in a max principal stress direction which is at ∼ 45◦ relative to the cylinder.
A small defect (in the form of a gap between two elements) was put into the mesh in order to
break the rotational symmetry of the problem and to get the problem to localize in a sharp
band. The results are shown in figure 15. The expected spiral shaped crack propagation
pattern is observed.
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Figure 15: Results for torsion of a brittle cylinder. The expected helical fracture pattern is
observed.
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2.8 Thread scalability

In addition to the apparent fidelity of the proposed explicit phase-field method, the ap-
proach is massively thread scalable, as demonstrated by a GPU (and platform portable)
implementation of PhaseFieldMini using Sandia’s Kokkos [23] library. This approach to
dynamic fracture simulations can be considered future proof in the sense that as the number
of threads per processor continues to increase, the method proposed here will continue to
see proportional performance gains.7 Thread scalability results for the implementation using
both Intel architectures and Nvidia GPUs are shown in figure 16.

Figure 16: Thread scalability results for a Kokkos [23] implementation of an explicitly inte-
grated cohesive phase-field model. The GPU execution results in over 100 X performance
gains relative to a non-vectorized simulation run on a single Intel Haswell thread.

A final concern that is addressed in this implementation (and motivated further by the
adjoint calculations in section 3) is that on threaded architectures, run-to-run machine pre-
cision repeatability is not ensured. This is especially true with the use of atomic operations.
To address this issue, we used a data duplication approach to avoid atomics and to ensure
that add orders for nodal force assembly is independent of the number of threads and thread
execution order. A simple schematic showing how this works is provided in figure 17. The
idea is that all the element forces are computed and then stored element by element on

7This is in contract to several alternatives for predicting crack propagation which require significant global
communication, localized computation, data movement, and/or mesh modifications.
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the mesh. In a separate loop, we loop over all the nodes and sum these stored forces in
a predetermined order. The resulting simulations give the same result bit-for-bit indepen-
dent of the number of threads or the thread execution order. This was found to be critical
for reliably checkpointing and recomputing simulation results, as required for the adjoint
implementation described in section 3.

Figure 17: Schematic demonstrating an approach for maintaining determinacy in multi-
threaded simulations. Element forces are stored globally and a second loop over nodes is
used to assemble these element forces in a predetermined order.
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3 Inverse methods for dynamic fracture simulations

Significant effort has gone into accurately and reliably predicting crack propagation in en-
gineering materials. The previous section of this report describes some non-trivial improve-
ments in this area. While there is still more work to be done in improving the predictive
capabilities of fracture simulations, predictions in-and-of themselves are often not of ulti-
mate interest. More often the real objective of simulation codes is to use predictions to
make decisions, improve designs, or determine physical conditions/parameters which led to
observed results in the real world. This is where inverse methods come in. At a basic level,
inverse methods solve optimization problems with the constraint that the appropriate phys-
ical equations (say linear elasticity, or phase-field fracture) are satisfied. Inverse methods
are behind technologies such as topology optimization, parameter calibration, automated
design, optimal control etc. However, little work has been done in the area of applying
inverse methods to problems involving crack initiation and propagation. This work begins
closing that gap by developing techniques and expertise to perform these types of inverse
problems where the physics of interest is transient and highly nonlinear. The application
here focuses on the automated design of heterogeneous brittle materials to maximize crack
resistance. However, the techniques developed here and the conclusions drawn are generally
applicable to other highly nonlinear transient problems.

There are several inverse problems involving fracture of interest to the engineering com-
munity, including:

• Non-destructive evaluation: determine the existing cracks in a structure given
observations of how waves propagate.

• Crack forensics: determine what loads were applied to a structure that caused it to
damage/fracture in an observed way.

• Nonlinear topology optimization: determine the optimal design (shape and topol-
ogy) of a structure to minimize the likelihood of crack propagation.

• Heterogeneous material design: design the layout of a heterogeneous micro-structure
to maximize crack resistance.

There is a common theme in all the above mentioned inverse problems: these problems
are all characterized by having a large number of optimization/design variables. Further-
more, the number of design variables scales with the resolution of the problem discretization.
For example, the number of design variables in non-destructive evaluation, topology opti-
mization and material design is proportional to the number of elements. For the crack
forensics problem, the number of design variables scales with the number of time steps times
the number of active boundary nodes. This presents a significant challenge to traditional
simulation codes, as they are only designed to predict a single scenario at a time. In order
for an optimization procedure to be computationally feasible for these problems (especially
as the mesh resolution is increased), it is necessary to be able to efficiently compute the
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sensitivity of a quantity of interest with respect to a large number of design variables. The
mathematical approach to overcome this limitation is called the adjoint method (also called
backpropagation or reverse-mode automatic differentiation in different communities).

To motivate this method, first consider the alternatives: finite differencing or propagat-
ing sensitivities forward in simulation code. Both of these approaches are computationally
infeasible as the number of design variables gets large. In particular if we take T to be the
average time to run a single simulation and evaluate the quantity of interest, the standard
approaches to compute sensitivities would require tsim = MT , where M is the number of
design variables. For realistic problems of engineering interest, both M and T scale with the
problems size, and can each be > 1e8. By contract, using the adjoint method these same
sensitivities can be computed with the same (or increased) precision at a cost which scales
as tsim = αT + M , a cost reduction of up to 8 orders of magnitude (or more as problem
sizes continue to increase). Depending on the physics and implementation, the time multi-
plication factor α can vary from α = 1 to about α = 10 in the worst case. For the physics
considered here, an α of around 6 was required due to the fact that dynamic checkpointing
and recomputation is necessary if the problem size (including every time step’s results) is
too large to fit entirely in memory [24]. In the proceeding, we provide a quick (and hopefully
intuitive) derivation of the adjoint method for the case of an explicit update rule, and also
for the case of an implicit update rule. In addition, we derive the basic equations necessary
to compute adjoints for the case of an explicit phase-field model coupled to a linear-elastic
continuum model. Finally, we show preliminary results using these efficient and accurate
sensitivities for heterogeneous design of a brittle composite to maximize crack resistance.

3.1 Adjoint for explicit recursion relations

Here we provide a brief derivation of the adjoint equation for explicit recursion relations.
This derivation is inspired by the one in [25], but differs in its use of Lagrange multipliers.8

Suppose we have a simulation defined by a recursion relation (e.g., any explicit dynamic
code):

un = hn(un−1;θ), (10)

with un ∈ RN and θ ∈ RM . It is assumed that u0(θ) is known, and an objective function /
quantity of interest (qoi) is given as

f(u,θ) =
N∑
n=1

gn(un;θ),

8The adjoints derived in this report are sensitivities for the discretized equations. This is in contrast to
the PDE’s adjoint, which can often be derived analytically and then discretized. The author’s view is that
the adjoint to the discretized equations is more useful in practice because it corresponds to the intuitive
notion of a sensitivity in a simulation, i.e., it matches a finite difference approximation.
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and we want to compute the sensitivity of the qoi, f , with respect to the simulation param-
eters θ:

df

dθ
=

N∑
n=1

dgn

dθ
.

Using the chain rule and the notation f,θ := ∂f
∂θ

and f,u := ∂f
∂u one finds:

df

dθ
=

N∑
n=1

gn,θ + gn,un

dun

dθ
,

where dun

dθ
must be computed recursively using the chain rule. This results in a fairly com-

plicated calculation that is computationally demanding. In particular, the terms dun

dθ
require

computing and storing NM values. For N and M large (as is typical in large PDE con-
strained optimization problems) this approach becomes computationally infeasible and scales
as the cost of computing sensitivities numerically, e.g., using finite differences.

To avoid the expense of computing the sensitivities using this forward propagation method,
we instead construct the Lagrangian

L(u,λ;θ) =
N∑
n=1

gn (un) + 〈λn,hn(un−1)− un〉,

where 〈a, b〉 denotes an inner product. With the recursion relation equation (10) satisfied, the
inner product terms in the Lagrangian are all zero for any choice of the Lagrange multipliers
λn, so we have

f(u,θ) = L(u,λ;θ) and therefore df

dθ
= dL
dθ
.

Using the chain rule again, the sensitivity of the qoi is

df

dθ
= dL
dθ

=
N∑
n=1

gn,θ + 〈gn,u,
dun

dθ
〉+ 〈λn,hn,θ + hn,u

dun−1

dθ
− dun

dθ
〉

= gN,θ + 〈λN ,hN,θ〉+ 〈gN,u − λN ,
duN

dθ
〉 +

N−1∑
n=1

gn,θ + 〈λn,hn,θ〉+ 〈gn,u +
(
hn+1
,u

)T
λn+1 − λn, du

n

dθ
〉 +

〈
(
h1
,u

)T
λ1,u0

,θ〉.

As mentioned previously, terms like dun

dθ
are hard and expensive to compute directly, but we

are free to choose the adjoint variables λn in a convenient way. In particular, if we start
with λN = gN,u, and use a recursion relation on the adjoint variables

λn = gn,u +
(
hn+1
,u

)T
λn+1, (11)
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we find

f,θ =
N∑
n=1

(
gn,θ + 〈λn,hn,θ〉

)
+ 〈

(
h1
,u

)T
λ1,u0

,θ〉. (12)

Note that the adjoint variables are integrated backward in time, starting with a final con-
dition on λN . The computation of the previous adjoint variable λn−1 depends on both λn
and un−1. Finally, we note that nothing in either the adjoint equation (11) or the sensitivity
equation (12) scales as NM . In fact, the cost of computing M parameter sensitivities has a
computational complexity similar to evaluating the forward recursion relation equation (10)
once!

3.2 Adjoint for implicit recursion relations

For completeness, we generalize the results from the previous section to implicit recursion
relations (essentially any physics simulation fits into this form):

hn(un−1,un;θ) = 0

with u0(θ) given, and an objective

N∑
n=1

gn(un;θ).

The Lagrangian is:

L(u,λ;θ) = gn (un) + 〈λn,hn(un−1,un)〉,

where the summation over n is implied here.

The sensitivities are

dL
dθ

= gn,θ + 〈gn,u,
dun

dθ
〉+ 〈λn,hn,θ + hn,u

dun−1

dθ
+ hn,v

dun

dθ
〉

or

dL
dθ

=gN,θ + 〈λN ,hN,θ〉+ 〈gN,u +
(
hN,v
)T
λN ,

dun

dθ
〉 +

N−1∑
n=1

gn,θ + 〈λn,hn,θ〉+ 〈gn,u +
(
hn+1
,u

)T
λn+1 +

(
hn,v
)T
λn,

dun

dθ
〉 +

〈
(
h1
,u

)T
λ1,u0

,θ〉,

where we use the notation h,u := ∂h(u,v)
∂u and h,v := ∂h(u,v)

∂v .
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Terms like dun

dθ
are hard to compute directly, so we choose the adjoint variables λn in a

convenient way. In particular, if we start by solving(
hN,v
)T
λN + gN,u = 0,

and use an implicit recursion relation on the adjoint variables(
hn,v
)T
λn +

(
hn+1
,u

)T
λn+1 + gn,u = 0,

we find

L,θ =gN,θ + 〈λN ,hN,θ〉 +
N−1∑
n=1

gn,θ + 〈λn,hn,θ〉 +

〈
(
h1
,u

)T
λ1,u0

,θ〉.

This completes the derivation.

3.3 Adjoint for an explicit dynamic time step update

For this work, we are primarily interesting in explicit dynamic continuum mechanics simu-
lations. One very common integration scheme in this field is the so-called explicit Newmark
or central difference time integration algorithm [16]. Given a material and mass model for
computing accelerations a from deformed nodal coordinates x:

an = πn(xn),

the explicit Newmark algorithm can we written

xn+1 = xn + ∆tvn + ∆t2
2 an

vn+1/2 = vn + ∆t
2 an

an+1 = πn+1(xn+1)
vn+1 = vn+1/2 + ∆t

2 an+1, (13)

where v are the velocities and ∆t is the time step increment. This is an explicit update rule
for the simulation’s state (displacement, velocity and acceleration) at step n given the state
at step n−1. To compute the corresponding explicit adjoint using equation (11), we identify
the state u as

un :=

 xn
vn
an

 .
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The state update rule un = hn(un−1,θ) is given by the explicit update equations (13). The
adjoint state is

λn =

 x̂n
v̂n
ân

 ,
where

x̂n = ∂〈hn+1, x̂n+1〉
∂xn

v̂n = ∂〈hn+1, x̂n+1〉
∂vn

ân = ∂〈hn+1, x̂n+1〉
∂an

.

For the explicit Newmark case, the updates on the Lagrange multipliers can be simplified to

ân+1/2 = ân+1 + ∆t
2 v̂n+1

x̂n = x̂n+1 + ân+1/2 · πn+1
,x

v̂n = v̂n+1 + ∆t x̂n

ân = ∆t
2 v̂n. (14)

In addition to the adjoint relation (11), we must also supply the sensitivity of the state
updates to the parameters:

∂〈hn+1, x̂n+1〉
∂θ

, (15)

and also the sensitivities of the qoi to each state and the parameters.

A new C++ computational framework Springbok was developed to manage all of these
incremental sensitivity equations. As described in Appendix A, a user can supply a forward
recursion relation (e.g. equation (13)), the corresponding adjoint recursion relation (e.g.
equation (14)), the state update parameter sensitivities (e.g. equation (15)) and the qoi
sensitivities. With this, the library will manage the evolution of the simulation and adjoint
calculations, and will return with both the final qoi and its sensitivity with respect to all
the input parameters. This framework was essential for achieving the results presented in
section 3.5.

3.4 Adjoint for an explicit dynamic time step update with damage
evolution

In addition to the standard coordinate updates used in classical continuum mechanics models,
we are also interested in a coupled phase-field damage evolution. Assuming an explicit Euler
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update rule for the phase field and explicit Newmark for the mechanics results in the following
explicit update rule:

xn+1 = xn + ∆tvn + ∆t2
2 an

dn+1 = dn + ∆twn

vn+1/2 = vn + ∆t
2 an

an+1 = πn+1
(
xn+1,dn+1

)
wn+1 = ωn+1

(
xn+1,dn+1

)
vn+1 = vn+1/2 + ∆t

2 an+1,

where d is the nodal damage field and w ≈ ḋ is the discretized damage-rate.

Similar to the derivation of the explicit Newmark update above, we compute the adjoint
update rules for the coupled phase-field/mechanics problem as

ân+1/2 = ân+1 + ∆t
2 v̂n+1

x̂n = x̂n+1 + ân+1/2 · πn+1
,x + ŵn+1 · ωn+1

,x

v̂n = v̂n+1 + ∆t x̂n

ân = ∆t
2 v̂n

d̂
n

= d̂
n+1

+ ân+1/2 · πn+1
,d + ŵn+1 · ωn+1

,d

ŵn = ∆t d̂
n+1

.

The computation of the parameter sensitivities is similar to that in section 3.3. These
equations were implemented in Springbok and fully tested. Because of the huge number of
time steps required to simulate these dynamic problems (� 1000), it is impossible to store
all the states un, which are are required to compute the adjoint recursion relation. As de-
scribed in Appendix A, dynamic checkpointing is the solution. This necessary involves some
duplication of computational effort to recompute states which were unable to be stored.
When timing problems involving approximately 120, 000 elements and 10, 000 time steps,
we found that the cost of computing both the qoi and adjoint sensitivities (including this
checkpointing and recomputation effort), was at most 7 times the cost of a single forward
solve. This was using 30 checkpointed states that required about 15 times the memory that
a forward simulation alone would have. As these problems involve over 100, 000 sensitivi-
ties, this results in a time savings of over 10, 000 relative to finite differencing or forward
sensitivities!9 This relative benefit only increases as the problem size gets larger.

9Admittedly, this is not as large a benefit as adjoints for linear implicit problems which only take ∼ 2
times the effort to compute qoi and sensitivities over qoi alone, or nonlinear implicit adjoint problems which
can be 1 + ε the cost of a forward solve alone. Nevertheless, the approach results in significant savings over
alternative sensitivity methods for dynamic problems.
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3.5 Heterogeneous material design inverse problem

To demonstrate the potential provided by adjoint-based embedded sensitivities, we provide
a demo nonlinear inverse problem. We focus on the heterogeneous material design prob-
lem mentioned in the introduction to this section. Recent simulation work using phase-field
models of fracture have demonstrated it is possible to significantly improve the effective frac-
ture toughness of a heterogeneous material relative to the individual constituents [26]. For
example [26] showed that alternating stiff/compliant layers can increase fracture resistance.
In addition, they showed that designed compliant pathways through a stiffer material can
encourage the crack to follow a tortuous path, minimizing the total crack extent.

Inspired by this, we set up an inverse optimization problem to try and find a locally
optimized solution to this heterogeneous material design problem to minimize the extent of
crack propagation.

The formulation is as follows: minimize the total damage evolution by changing the initial
material stiffness, element by element:

min
Ee

num nodes∑
n

dn(tfinal),

s.t. Emin ≤ Ee ≤ Emax,

where we are constraining the stiffness by lower and upper bounds, and where the sum here
is a sum over the nodal damage field evaluated at the end of the simulation. There is an ad-
ditional constraint that the physics satisfies the standard dynamic phase-field fracture model
from section 2.1. This objective (to minimize the extent and magnitude of damage evolution
in the material) is a surrogate to the real objective of maximizing fracture toughness, but in
practice the results are likely to be similar.

The material properties for this simulation assumes that the element by element material
stiffness vary between Emax = 47.5e9 and Emin = 190e9. The density is ρ = 8000 and the
fracture energy is Gc = 4e5, and the Poisson’s ratio is ν = 0.3.

This optimization problem likely has many local minima (as it is not yet sufficiently
regularized, a concern for future work), so the choice of initial guesses is important. For the
demonstration here, we simply use an initial guess for the stiffness that is randomly chosen,
element-by-element between Emin and Emax. A plot of this initial stiffness field is shown in
figure 18.

Applying a dynamic mode-I loading (fixed opposing vertical velocities on the left side of
the specimen) results in the crack propagation shown in figure 18.

This constitutes the so called forward problem. To compute the inverse design, we use the
adjoint calculation described in previous sections. The resulting adjoint sensitivity field for
each element’s stiffness (the sensitivity of the sum of the damage at the end of the simulation
with respect for this initial element stiffness guess) is shown in figure 20. An optimization
algorithm will try to minimize the extent of damage and will also tend to drive this adjoint
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Figure 18: Random initial guess stiffnesses for heterogeneous crack inverse problem.

Figure 19: Crack propagation for dynamic mode-I loading of the heterogeneous material
from figure 18.
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Figure 20: Initial adjoint field: the sensitivity of the total damage with respect to each
element’s stiffness.

field to as close to zero as possible (it cannot completely drive the derivatives to zero because
of the constraint that the element stiffness are bounded).

With a qoi and design sensitivities in hand, we interface to Sandia Rapid Optimization
Library (ROL) to perform the optimization. ROL is provided the objective function, the
gradients of the objective function and the bound constraints on the element stiffness. The
result from this optimization procedure is shown in figures 21 and 22. Figure 21 shows
the optimized crack propagation result. Comparing this result to the one in Figure 19, it
is clear that the optimization procedure has found a way to reduce the crack propagation
extend by almost a factor of 2. In addition, the final crack path is curved, similar to the
imagined designs suggested in [26]. The corresponding optimized stiffness design is shown
in figure 22. Stiffer elements are red, more compliant ones are gray. Here is it clear that
the design has chosen a curved complaint section, embedded in a stiffer matrix. This forces
the crack to curve and therefore dissipate more energy. In addition, we note the alternating
stiff/compliant layers at the trailing end of the crack. This is a residue of the optimization
procedure, which found that these alternating layers could mitigate the extent of cracking.
These layers are reminiscent of seashell structures, which are similarly designed to maximize
toughness.

These results should only be taken as a demonstration of the incredible potential for
these methods. While qualitatively the resulting design appears reasonable, in reality a few
critical approximations were make which makes it extremely unlikely that the design will be
optimal in reality. Among other issues, perhaps the biggest if the fact that the evolution of
the phase-field had to be smoothed in order to have a qoi which varied continuously as a
function of the input parameters. This issue is discussed in more detail in the next section.
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Figure 21: Local optimal solution: extent of crack propagation. Compare this result to the
initial guess prediction in Figure 19.

Figure 22: Local optimal solution: material stiffness which minimizes crack propagation for
mode-I loading.
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Figure 23: Example of an everywhere non-smooth response function. Plot shows qoi vs. a
design variable.

3.6 The smoothness problem

A significant challenge was identified when trying to do inverse problems involving highly
nonlinear material models that have a threshold (e.g., a yield stress or an energy-based failure
criterion). This includes the phase-field fracture model used here, where there is a constraint
that damage evolution can only be positive. It was found that whenever there is a material
model threshold which results in a discontinuity, the parameter sensitivities are effectively
infinite (in code, the floating point values overflow) for any value of those parameters. This is
because when there are enough elements and time step in a simulation, there will inevitably
be some material evaluation which is close to a threshold discontinuity. This is true even if
the sensitivities are computed using adjoint or finite differences. In the finite difference case,
the parameter sensitivities were found to be entirely dependent on the finite difference step
size, indicating that these derivatives are undefined to within machine precision. If efficient
automated design it to be achieved using large deformation finite element codes, it appears
that many of our existing material models (and probably contact algorithms) will need to
be reformulated. Follow on work will seek to address these concerns.

To give a more visual representation of this issue, figure 23 shows a made-up function
which is effectively discontinuous everywhere (and where the x-axis scale is a small multiple of
machine precision). In finite element simulations with a material model involving a threshold
at every element (or on element faces for contact), this is a typical resulting response for a
qoi vs. input parameters plot. This is worrying, as it means that the local sensitivities are
not well defined for these nonlinear solid mechanics simulations. This significantly reduces
the usefulness of the adjoint method and challenges UQ and V&V efforts. It is true that a
global sensitivity might still be meaningful in these simulations, but global sensitivities are
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Figure 24: Smoothed version of the response function in figure 23.

very expensive to compute, especially for a large number of parameters. Ideally, we want
to smooth the response in our simulation to something like that shown in figure 24. The
essential features of the model are still there, as ideally we are only smoothing discontinuities
as machine precision.

For the case of the phase-field inverse problem above, we had to smooth the damage
evolution constraint. This constraint says

φ̇ ≥ 0.

An example of such as smoothing is shown in figure 25. While the hope is that this approx-
imation would have little impact of the simulation results, that does not appear to be the
case. Improvement in this area is critical for getting more realistic and verifiable optimal de-
signs. Going forward, it appears that the biggest challenge now for applying inverse methods
to nonlinear continuum mechanics problems will be overcoming this smoothness issue. This
problem does not typically exist in other inverse formulations, such as topology optimization,
because the responses are smooth (at least almost everywhere). In the nonlinear case, we
may have to learn to deal with function that are nowhere smooth.
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Figure 25: Smoothed approximation to the φ̇ ≥ 0 constraint.
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4 Conclusion

In this report, two distinct developments were presented. The first was an implementation
and demonstration of a cohesive phase-field model [2] for brittle fracture simulations. It was
argued that a parabolic regularization of the model and an explicit dynamic implementation
results in a convergent damage model for both quasi-static and dynamic crack propaga-
tion problems. The approach is able to reproduce dynamic fracture benchmark problems
with reasonable efficiency. In addition, it was shown to be massively thread scalable, as
demonstrated by a GPU implementation using the Kokkos [23] library. This approach to
dynamic fracture simulations can be considered future proof in the sense that as the number
of threads per processor continues to increase, the method proposed here will continue to
see proportional performance gains. A version of this explicit gradient damage model has
been implemented in Sierra/SolidMechanics. Follow on work will extend the method to more
material varieties, e.g., geomaterial failure and ductile failure.

The second significant outcome was the development and demonstration of adjoint-based
embedded sensitivities for highly nonlinear dynamic fracture simulations. A C++ computa-
tional framework was developed to assist in computing adjoint-based parameter sensitivities,
test these sensitivities, and checkpoint the forward simulations to make the adjoint calcula-
tions both computationally and memory efficient. It was demonstrated that the sensitivity
of a quantity of interest with respect to hundreds of thousands of input parameters can be
computed at the cost of less than 7 forward crack propagation simulations. This capabilities
was interfaced to Sandia’s Rapid Optimization Library (ROL) to perform a demonstration
PDE constrained optimization problem involving crack propagation: the automated design
of a heterogeneous micro-structure to minimize crack propagation. However, a significant
challenge was identified when trying to do inverse problems involving nonlinear material
models that have a threshold (e.g., a yield stress or an energy-based failure criterion). It
was found that whenever there is an element level threshold which results in a slope dis-
continuity, the simulation’s parameter sensitivities are effectively infinite for any value of
those parameters. This is true if the sensitivities are computed using the adjoint approach
or finite differences. If efficient automated design it to be achieved using large deformation
finite element codes, it appears that many of our existing material models (and possibly
contact algorithms) will need to be reformulated with smoothness in mind. Follow on work
will seek to address these concerns.
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A Springbok: a C++ framework for computing
adjoint sensitivities with checkpointing in dynamic

simulations

Computing adjoint sensitivities for nonlinear transient simulations is a complicated procedure
to efficiently automate. At a minimum, a code which seeks to compute embedded sensitivities
using the adjoint method would have to implement:

• A objective function, also called a quantity of interest (qoi). Examples: maximum
deflection, temperature at a given location.

• A clear definition of the simulation’s state un at step iteration n. The state evolves as
the simulation progresses. Examples: displacements, velocities, damage.

• A clear definition of the input parameters θ to the simulation. Parameters are fixed
throughout the simulation. Examples: stiffness, initial density at each material point.

• The sensitivity of the objective function with respect to both design parameters, θ,
and the simulation’s state un at each step iteration n.

• A rule for updating the simulation’s state from n to n+ 1: un+1 = h(un,θ).

• The sensitivity of the state update rule with respect to both the previous state un and
the parameters θ.

• A condition for determining when the simulation should end.

• A mechanism for retrieving the previous state un−1. Either each state must be stored
or a certain subset of states can be checkpointed and the state un−1 might have to be
recomputed from some earlier state.10 An example of this checkpointing procedure is
shown in figure A.1.

In addition, there are many places in this flow where simple coding mistakes can make
the adjoint sensitivity calculation very wrong. We have found it necessary to test each term
of the adjoint individually and then build up the total sensitivity.

To aid with the implementation and testing of computing adjoints in dynamic simula-
tions, an extensible C++ library Springbok was designed to efficiently encapsulate these
requirements and to help automate the incremental testing of state and objective sensitivi-
ties.

10The requirement to recompute the same state multiple times when calculating adjoints in dynamics
means it is important that the forward simulation is computationally repeatable. This puts a strict require-
ment on simulations running in a multi-threaded environment, where the use of atomic operations means
that bit-by-bit reproducibility in a forward simulation is not guaranteed. For the work presented in this
report, a fairly standard data duplication procedure was used to ensure simulation results were independent
of the number of threads and thread execution order.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8

(i) Step 9 (j) Step 10

Figure A.1: Example dynamic checkpointing algorithm. When computing adjoint solutions
going backward in time, λn depends on both the adjoint solution one step ahead in time
λn+1, and also on the state un at that time. In steps 1–5, we are simulating the state
(tan) going forward in time, and occasionally checkpointing (blue). At step 6, we begin to
backpropagate the adjoint solution. At first because we checkpointed u4, we can directly
compute the previous adjoint solution. However, when we get to the end of step 7, we do
not have access to the current state u3, so we must recompute u3 from the last checkpointed
state, u0, as shown in steps 8–10.
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This framework consists of a few key classes that need to have derived implementations
in order to compute adjoint sensitivities for a new discretized PDE or recursion relation:

• State

• Parameters

• StateUpdateRule

• Qoi

• TerminationCondition

We’ll briefly describe the functionality of each of these classes.

A.1 State

The State contains all the data in the simulation that is updated from one step iteration to
the next. A derived implementation of a state can have any number of variables and fields
internal to it. The only essential overrides necessary are a double& operator[](int)
method which takes an integer and returns a floating point value for each index, and a int
num dof() method which returns the total number of floating point values which make up
that state.

A.2 Parameters

The Parameters class contains all the inputs to the simulation that a user wants to compute
sensitivities with respect to. It can have arbitrary size, but must provide override methods:
double& operator[](int) and int num parameters(). Parameters can not change dur-
ing a forward simulation, but will change during the course of an optimization procedure
when solving the PDE constrained optimization problem.

A.3 StateUpdateRule

The StateUpdateRule specifies the recursion relation. For explicit dynamics, it is the
procedure which updates the current solution to the next step iteration. A StateUpdateRule
is constructed with a Parameters instance and must implement a void update(State&
state old, State& state new) method which defines how state new is determined from
the parameters and state old. In addition, two sensitivity methods must be implemented:

update adjoint(State old, State& rhs, State& dState)
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update params adjoint(State& old, State& rhs, Parameters& dPars).

The sensitivity of the update rule with respect to state old is provided in
update adjoint. In this case, dState = λ, must be implemented as

λ := ∂〈h(u;θ), rhs〉
∂u

,

where u is state old, h is the update rule function, and rhs is an arbitrary input vector
which has the size and type of a State.

The sensitivity of the update rule with respect to the parameters θ is provided in
update params adjoint. Here dPars = µ, must be implemented as

µ := ∂〈h(u;θ), rhs〉
∂θ

.

Templated helper functions have been implemented for testing that all of these sensi-
tivities are evaluated correctly for the provided update rule. They are designed so that a
new State and StateUpdateRule can be added and immediately have its sensitivity op-
erators tested with minimal additional coding effort. It is also possible to use automatic
differentiation to compute the sensitivity operators directly from the update rule. This has
not been done for the work demonstrated here, but might make extensions easier and more
maintainable.

A.4 Qoi

The Qoi class specifies the quantity of interest (objective function). It is constructed with
a Parameters& instance. The override methods for this class are double evaluate(State&
state), void dPars(State& state, Parameters& params deriv) and void dState(State&
state, State& state deriv). the evaluate method returns the quantity of interest as a
function of the State and Parameters. The sensitivity of the quantity of interest with re-
spect to the Parameters and State are implemented in dParams and dState respectively. If
a quantity of interest only depends on the state at certain step iterations, the implementation
of this class must check and only return a non-zero value when appropriate. Generic helper
functions have also been implemented to fully test the Qoi sensitivity implementations.

A.5 TerminationCondition

The TerminationCondition class determines when the simulation ends. It is constructed
with a Parameters instance and implements a bool evaluate(State& state) method
which returns true only when the simulation should end.
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A.6 Implementation Classes

In addition to the user provided classes described above. Several hidden helper classes are
critical for performing the adjoint calculations. Of note are the classes:

• StateContainer

• StateManager

• Physics

The StateContainer class has derived classes which are templated on the State type
and simply stores a given number of states. In particular, it is allocated to hold the maximum
number of states a user thinks can be stored safely in memory. This number is defaulted
to 50. The checkpointing algorithm reads and writes to states as necessary from this fixed
sized container of states.

The StateManager implements key parts of the dynamic checkpointing algorithm from [24].
A StateManager is constructed with a preallocated StateContainer and a StateUpdateRule.

The public methods are

• void update state()

• void reverse state()

• void update adjoint state()

• State& get current state()

• State& get previous state()

The void update state() method updates the internal state using a StateUpdateRule.
The void reverse state() method fetches the previous state at n − 1. If that state
is checkpointed, it simply returns a reference to it. Otherwise it goes back to the most
recently checkpointed state and uses that that to recompute up to the n − 1 state and
then returns a reference to that newly recomputed state. A demonstration of why this is
necessary is provided in figure A.1. The method void update adjoint state() uses the
StateUpdateRule to compute the previous adjoint solution from the current one. The meth-
ods State& get current state() and State& get previous state() return the current
and previous states, respectively.

The Physics class owns an instance of the following classes: Parameter, State,
StateUpdateRule, Qoi, TerminationCondition. It uses these classes to allocate and own
both a StateContainer and a StateManager. The physics is responsible for implement-
ing the part of the dynamic checkpointing algorithm [24] that drives the simulation from
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the initial state to the final state, determines when to stop, evaluates a qoi, and then re-
verses to compute the initial adjoint field from the final adjoint. This is in contrast to the
StateManager, which knows nothing about Qoi, Parameter or TerminationCondition.
In fact, the StateManager’s key job is to be able to fetch new and previous states for
the Physics (using the StateUpdateRule). The algorithms internal to the Physics and
StateManager classes don’t need to be implemented or rederived by users of the library.
The only things that change when adding a new recursion relation (e.g., physics equation)
are encapsulated in the public classes from the previous subsections.

This design results in a powerful, relatively easy to use, and extensible framework for
automatically calculating highly complex explicit update rules and their adjoint sensitivities.
It is driven at a fairly high level and is compatible with both MPI and thread-parallel
implementations of the underlying physics. In fact, the results presented in this report
ran predominantly on Nvidia’s Telsa K-40 GPUs. The only significant overhead associated
with Springbok is the necessary checkpointing and computational duplication required for
computing dynamic adjoints on computers with limited memory space. In fact, if the number
of checkpoints is set to be higher than the number actually used in the simulation, there
should be negligible overhead in using Springbok relative to a non-checkpointed adjoint
implementation.
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